n°HTPYR0005B

Martine TROCHU
Docteur en hydrogéologie
Hydrogéologue agrée en matière d'hygiène publique
pour le département des Hautes Pyrénées

10537X0095/HY 065002715 DDASS des HAUTES - PYRENEES 3 0 MAI 2008

COURRIER ARRIVE

AVIS SANITAIRE DE LA SOURCE HOUNT GRANDE

COMMUNE DE BANIOS

DEPARTEMENT DES HAUTES PYRENEES (65)

Maître d'ouvrage : commune de BANIOS

Mai 2008 Dossier n° HTPYR005B

Rapport d'expertise hydrogéologique

TABLE DES MATIERES

1.	PREAMBULE	. 3
2.	INFORMATIONS GENERALES SUR L'ALIMENTATION EN EAU DE LA	
CO	LLECTIVITE	
3.	SITUATION DU CAPTAGE	. 4
4.	CONTEXTE GEOLOGIQUE	. 4
5.	CONTEXTE HYDROGEOLOGIQUE	. 5
6.	LE CAPTAGE – LA DISTRIBUTION	. 6
6.	1. Captage	
6.	2. La distribution	. 6
7.	CARACTERISTIQUES ET QUALITE DE L'EAU CAPTEE	. 7
8.	VULNERABILITE ET RISQUES DE POLLUTION	. 8
9.	MESURES A METTRE EN ŒUVRE POUR LA PROTECTION DE LA	
RES	SSOURCE	. 8
9.		
9.	2. Périmètre de protection immédiate	. 9
9.	Périmètre de protection rapprochée	10
10.	CONCLUSION	12
10	0.1. Disponibilité en eau	12
11	1.2. Avis sur la protection de la source Hount Grande	12
Figu	ıres	
1/25	re 1 : Localisation géographique des captages et des réservoirs = Extrait carte IG 5000 - Ouvrages recensés en Banque du sous-sol	
Can	ure 2 : Contexte géologique – Extrait carte géologique Bagnères de Bigorre pan – 1/50000 – Source BRGM	
Figu BR(ure 3 : Légende géologique – Extrait carte géologique Campan – 1/50000 – Sour GM	ce
Bigo	re 4 : Schéma structural et coupe géologique – Extrait carte géologique Bagnères orre et Campan – 1/50000 – Source BRGM	de
	re 5 : Coupe géologique –extrait rapport Asconit	
Figu	ire 6 : Planches photographiques du captage, du réservoir et de son environneme	nt
actu	el (2008)	
Figu	re 7 : Localisation du périmètre de protection immédiate – Extrait plan cadastral	
Figu	re 8 : Environnement de la source Hount Grande et limites du périmètre de	de
prot	ection rapprochée – Vue aérienne – Photoexplorer 2003	
Figu	re 9 : Localisation du périmètre de protection rapprochée – Extrait carte IG	N
1/25	000	
Figu	re 10 : Localisation du périmètre de protection rapprochée — Extrait plan cadastral	1

Annexes

Annexe 1 : Analyses d'eau des captages

1. PREAMBULE

Dans le cadre de la procédure administrative concernant l'autorisation de distribuer l'eau destinée à l'alimentation humaine, la commune de BANIOS a demandé un avis hydrogéologique pour la définition des périmètres de protection de la source. Cet avis fait suite à la demande de la Mairie, à la proposition de Monsieur le coordonnateur des hydrogéologues agréés et à ma désignation par la Direction Départementale des Affaires Sanitaires et Sociales par délégation de Monsieur le Préfet des Hautes-Pyrénées.

Cet avis constitue une pièce du dossier d'enquête publique.

Il a été réalisé sur la base des documents suivants :

- Carte géologique de Bagnères de Bigorre et Campan au 1/50000,
- Carte topographique IGN 1/25000 1847 Ouest,
- Etude préalable à la visite de l'hydrogéologue agréé Asconit Consultants Décembre 2006,

et à la suite d'une visite de terrain réalisée le 7 mars 2008, en compagnie de Monsieur ABAT, Maire de BANIOS et Madame BAILES (DDASS 65).

2. INFORMATIONS GENERALES SUR L'ALIMENTATION EN EAU DE LA COLLECTIVITE

La commune de Banios est alimentée par le captage Cot Lunca situé à proximité de la route départementale D84. Le captage de cette source est destiné à être abandonné en raison de la présence de la route départementale en amont.

Pour remplacer la source actuelle, une nouvelle source a été recherchée dans un environnement plus favorable à son exploitation pour l'alimentation en eau destinée à la consommation humaine. La source Hount Grande satisfait aux conditions de débit, de qualité et d'environnement.

La synthèse des données suivantes est issue du rapport Asconit Consultants.

La population en 1990, comprenait 50 habitants sédentaires. En 1999, la population était de 43 habitants sédentaires (source base de données ASPIC).

En l'absence de données de consommation, une estimation des besoins a été réalisée par le bureau d'étude. Les besoins en eau ont été calculés sur la base de 200 l/j/personne, 50 l/j/bovins et de 30 l/j/ovins et sont synthétisés dans le tableau ci-dessous.

	Nb	m13/j
Population permanente	55	11
Population saisonnière	25	5
Bovins		0
Caprins		0
Ovins		0
Consommation minimale		11
Consommation maximale		16

Le débit moyen de la source est de 95 m³/j en 2006 sur la base de 4 mesures. La consommation en eau peut être couverte par le captage existant de façon **indépendante** sans aucune interconnexion.

La source Hount Grande fournit un débit minimum de l'ordre de 73 m³/j (juillet 2006).

3. SITUATION DU CAPTAGE

La source se situe sur la parcelle cadastrale 360 A sur la commune de Banios (65) à 1 km au Sud-Ouest du village (figure 1).

Les données géographiques du captage sont synthétisées dans le tableau suivant :

Lami	pert II étemdu		
X	Y	Zen m NGF	Cadastre
426.921	1784.434	700	360A

La parcelle n'est pas clôturée.

La situation du captage et les limites de la clôture devront être validées par un géomètre en coordonnées Lambert II et III et sur un plan cadastral. La source n'est pas répertoriée à la banque du sous-sol du BRGM.

4. CONTEXTE GEOLOGIQUE

Le contexte géologique est illustré par les figures 2 à 5. Le secteur de Banios se situe dans la zone Nord-Pyrénéenne qui est encadré au Sud par la zone primaire axiale, et au Nord par la zone sous-pyrénéenne constituée de flyschs et de molasses tertiaires.

La zone Nord-Pyrénéenne est séparée de la haute chaîne primaire axiale par la faille Nord-Pyrénéenne. Cette zone comprend les chaînons de la bordure sud constitués de calcaires, de dolomies et de brèches (Lias inférieur à Aptien), des terrains à faciès flysch d'âge albo-cénomanien des baronnies et des massifs de terrains anciens. Cette zone est limitée au nord par le chevauchement frontal Nord-Pyrénéen.

Localement, les formations rencontrées à l'affleurement sur le secteur de la source Hount Grande sont des brèches à éléments carbonatés jura-crétacés (n7b-c) et des schistes constitués par une puissante série turbiditique pélito-gréseuse (n7b-cS)de l'Albien moyen et supérieur. Ces formations sont compartimentées par des accidents importants de direction WNW-ESE.

5. CONTEXTE HYDROGEOLOGIQUE

La source apparaît dans des blocs calcaires fracturés de l'Albien moyen et supérieur. Gargasien et de l'Albien sup au contact d'une faille qui fait remonter un ensemble marneux (n6-7am).

La coupe schématique SO-NE présentée en figure 5 illustre le contexte géologique local. L'aquifère des brèches calcaires est compartimenté, et fracturé.

Dans ce contexte de montagne, la pluviométrie et l'enneigement sont importants (1200 mm à Bagnères de Bigorre) et assez bien réparties au cours de l'année. L'alimentation des aquifères présents et des rivières est correctement assurée. La pluie efficace est estimée à 800 mm par an sur ce secteur (source Météo France). L'influence de la pluviométrie est importante. L'étiage est marqué et se produit de juin à décembre.

L'aquifère des brèches est vulnérable à la pollution en raison de l'absence de recouvrement épais et de la présence de blocs favorisant les circulations rapides. En cas de pollution accidentelle, le transfert est rapide vers les exutoires et la pollution ne persiste pas dans l'aquifère.

Le bassin versant amont de la source est composé de brèches calcaires perméables. Le substratum est constitué par la série schisto-péliteuse d'Espieilh.

Cette source a fait l'objet de relevés de débit entre février 2006 et octobre 2006. La valeur moyenne des valeurs mesurées est de l'ordre de 95 $\rm m^3/j$, la valeur mini est de 72 $\rm m^3/j$ (24/07/2006) et la valeur maxi est de 130 $\rm m^3/j$ (23/10/2006).

La limite du bassin d'alimentation hydrogéologique est déterminée sur la base du contexte géologique, de la pluviométrie, de la topographie et du débit de la source. Cette surface est approximative en l'absence de données de débit sur plusieurs cycles hydrologiques complets.

6. LE CAPTAGE – LA DISTRIBUTION

6.1. Captage

L'accès le plus direct s'effectue en voiture par la route départementale n°84 puis par un chemin communal, qui rejoint le lieu-dit Lassère et à pied sur des parcelles et un petit chemin privé.

La source Hount Grande apparaît dans les blocs calcaires au niveau d'une zone fracturée. L'émergence semble être ponctuelle.

La source n'est pas captée et un captage réalisé dans les règles de l'art doit être construit. Un schéma de principe est fourni ci-après.

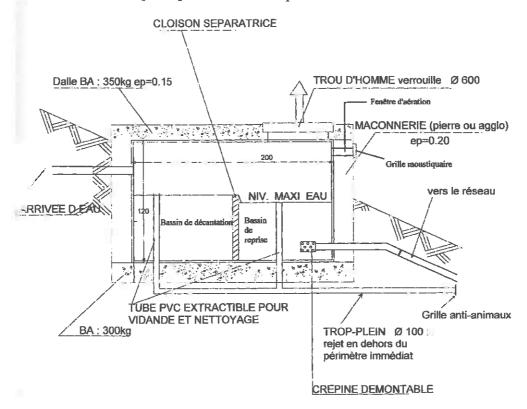


Schéma de principe d'un captage d'une émergence ponctuelle

6.2. La distribution

Le passage de l'adduction d'eau depuis la source est prévu le long du vallon jusqu'à un réservoir à créer. Le projet de captage et d'adduction doit être étudié et chiffré.

Compte tenu du contexte hydrogéologique de la source, nous préconisons une station de traitement avant distribution au chlore ou aux UV

7. CARACTERISTIQUES ET QUALITE DE L'EAU CAPTEE

Dans le cadre de la procédure de mise en conformité des analyses réglementaires ont été effectuées sur le captage, les prélèvements ont été réalisés, le 15/05/06 par le bureau d'études ASCONIT et les analyses par le laboratoire CARSO de Lyon. Les résultats sont reportés en annexe 1.

Les eaux sont minéralisées (conductivité de l'ordre de 262 µS/cm à 20°C) et de faciès bicarbonaté-calcique ce qui est conforme au contexte géologique (calcaires).

Les principaux paramètres physico-chimiques sont les suivants :

- pH: 8,2 UpH,
- Conductivité : 262 μS/cm à 20°C,
- Turbidité: 0.31 NTU (norme 2),
- Fer total : <0.05 mg/l (norme<0.2 mg/l).
- Manganèse :<0.03 mg/l (norme <0.050 mg/l).
- Nitrates : 2,6 mg/l (norme < 50mg/l),
- Sulfates: 5,3 mg/l (norme <250 mg/l).

Les indicateurs de pollution analysés montrent une absence de contamination chimique :

- la teneur en nitrates, sensibles aux apports d'engrais, est réduite, s'expliquant par l'absence de zones cultivées et l'absence d'apports azotés notables sur le bassin d'alimentation;
- les teneurs en nitrites, signes d'une pollution organique récentes, sont inférieures au seuil de quantification,
- les teneurs en pesticides sont inférieures au seuil de quantification.

La présence de coliformes totaux et d'entérocoques est notée sur l'analyse de mai 2006 et est probablement liée à la faible capacité de filtration de l'aquifère dans la zone d'affleurement. Un système de traitement devra être mis en place avant distribution.

Les résultats des analyses effectués en 2006 montrent que les eaux sont conformes aux normes des eaux destinées à la consommation humaine pour les paramètres physicochimiques, les substances indésirables, les substances toxiques, les pesticides, les HPA, les polychlorobiphényles.

Les activités en alpha totale (0,04Bq/l) et béta total (<0,06BQ/l) mesurées dans l'eau sont conformes aux normes de potabilité. Les eaux de la source Hount Grande sont de qualité radiologique satisfaisante.

8. VULNERABILITE ET RISQUES DE POLLUTION

La zone d'alimentation de l'aquifère est constituée par des blocs calcaires perméables affleurants et donc sans recouvrement susceptible de jouer un rôle protecteur vis-à-vis des contaminations superficielles. Elle présente des éléments défavorables à la protection de la ressource avec un aquifère libre et perméable. De plus, la minéralisation de l'eau à l'émergence traduit un temps de circulation de l'eau dans l'aquifère réduit, ce qui constitue un facteur de vulnérabilité en limitant la capacité d'auto-épuration de l'aquifère.

En conséquence, l'impluvium de la source peut être considéré dans son ensemble comme vulnérable aux pollutions de surface. Ce contexte hydrogéologique implique une vulnérabilité bactériologique et chimique forte, aux contaminations pouvant provenir des environs proches du captage.

Le débit de la source est réduit ce qui traduit un bassin d'alimentation peu étendu.

Les sols sont pentus et occupés par des prairies naturelles et des bois (figure 4).

Dans l'environnement amont proche du captage, les sources de contamination potentielles sont :

- Pacage d'animaux,
- Présence d'animaux sauvages (sangliers, chevreuils,..),
- Grange aménagée avec assainissement autonome (filtre à sable) en position hydraulique latérale,
- Chemin communal (des Baronnies) emprunté par des voitures.

9. MESURES A METTRE EN ŒUVRE POUR LA PROTECTION DE LA RESSOURCE

Il s'agit d'une source devant être captée pour l'eau potable destinée à l'alimentation du village de Banios. La délimitation des périmètres de protection s'applique pour assurer la maîtrise de la qualité de la ressource sur le plan foncier, et en mettant en place des mesures de protection au niveau des captages et de son environnement.

Pour rappel, il conviendra de faire préciser dans le cadre de la procédure par un géomètre la position du périmètre de protection immédiate définie dans le cadre de cet avis.

9.1. Captage

Les périmètres et les mesures de protection immédiate ont pour fonction d'empêcher la détérioration de l'ouvrage de prélèvement et d'éviter que des déversements ou des infiltrations de substances polluantes se produisent à l'intérieur ou à proximité immédiate du captage.

La source doit être captée suivant les règles édictées par la réglementation en vigueur.

Afin d'améliorer la qualité de l'eau au niveau des captages, des mesures non exhaustives sont récapitulées en suivant :

Captage:

- Capter la totalité de l'émergences suivant une méthode adaptée au type d'émergence;
- Construire une chambre de captage suivant les règles de l'art, munie d'aération et fermant à clef. Le captage pourra être équipé de deux compartiments dont une chambre productrice récupérant l'ensemble des arrivées provenant des émergences captées et une chambre de captage. La chambre de captage sera équipée de deux sorties dont une pour la canalisation d'exhaure et une pour la conduite destinée au trop-plein; accès à sec par une chambre aval;
- Rejet du trop-plein en dehors du périmètre immédiat ;
- Mise en place d'une clôture ;
- Mise en place d'un chemin sans décaissement important;
- Débroussaillage et coupe des arbres sans arrachage;
- Nettoyage et vidange au moins annuel du futur captage.

Distribution

- Réaliser une conduite de distribution dans le vallon et un réservoir ;
- Entretenir au moins une fois par an ces ouvrages;
- Mettre en place un traitement;
- Mettre en place des compteurs en production et distribution.

9.2. Périmètre de protection immédiate

La vulnérabilité de la source est dans la zone proche de son émergence, là où les circulations d'eau sont les plus superficielles.

Ce périmètre doit être propriété de la commune.

Le périmètre de protection immédiate concerne pour partie les parcelles 360, 332, 359 et 340 (figure 5) et ses dimensions sont les suivantes :

- 35 à 40 au Sud de l'émergence,
- 10 à 20 m au Nord,
- 15 à 20 à l'Est,
- 15 à 20 m à l'Ouest.

Il devra faire l'objet d'un levé de géomètre et d'un report cadastral. Ce périmètre devra être clôturé pour interdire l'accès à proximité du captage. L'accès au périmètre de protection se fera par un chemin à créer.

Sont interdits à l'intérieur de ce périmètre clôturé, tous dépôts, épandages de produits potentiellement polluant pour les eaux souterraines, activités ou installations non indispensables à l'exploitation du captage.

9.3. Périmètre de protection rapprochée

Les mesures de protection rapprochée doivent protéger le captage vis à vis de la migration souterraine des substances polluantes. Elles prennent en compte les caractéristiques géologiques et hydrogéologique et l'inventaire des risques de pollutions potentielles.

Le bassin versant hydrogéologique supposé est défini sur les photos aériennes et IGN en figures 8 à 10. Il s'étend sur une distance de 500 m à l'amont de l'émergence et englobe les formations calcaires de l'Albien sup et moyen. La superficie de ce bassin est de l'ordre de 30 ha. Le périmètre de protection rapprochée est défini sur la photo-aérienne en figure 8.

Habitat humain

Des anciennes granges transformées en habitation sont répertoriées.

Voies routières

Le chemin des Baronnies traverse le périmètre de protection rapprochée à une distance de 500 m en amont de la source.

Activités agricoles et forestières

Aucune activité agricole n'est présente à l'exception du pacage de moyenne montagne.

Les prescriptions destinées à protéger la ressource en eau potable sont les suivantes, en complément de l'application de la réglementation générale en vigueur?

pacage et parcage interdit.

- la coupe à blanc de la forêt, et la construction de nouvelles pistes carrossables ou routes sont interdites car ils pourraient détruire la protection naturelle de l'aquifère par le sol forestier et la végétation. Cette mesure concerne la totalité du PPR.

A l'intérieur de ce périmètre occupé par des bois et des prairies, toute activité réglementairement autorisée, autre que celle exercée actuellement sera interdite.

Concernant la circulation la vitesse sera limitée à la traversée du PPR sur la route des Baronnies et un plan de prévention en cas de pollution accidentelle devra être mis en place.

Au-delà du contrôle du respect de la réglementation générale en matière de protection des eaux, les mesures de protection rapprochée proposées pourront être les suivantes avec interdiction :

- de toute réinjection ou infiltration d'eaux usées ou pluviales dans le sol et le sous-sol quelque soit la profondeur,
- de toutes constructions à l'exception de celles destinées à l'exploitation de l'eau destinée au public,

- d'installations de dépôts d'ordures ménagères, d'immondices, de détritus, de produits radioactifs et de tous produits susceptibles d'altérer la qualité des eaux,
- des canalisations de transport d'hydrocarbures ou de produits chimiques ou dangereux pour les eaux souterraines,
- des carrières et autres industries extractives,
- de toute excavation ou réglementation stricte,
- d'implantation de cimetières (toute modification devra nécessiter un avis),
- des épandages de boues d'épuration, de lisiers, de déchets d'eaux usées, de boues industrielles, vinasses, déchets de distillerie, retraits de fruits et légumes,
- d'implantation d'établissements industriels et commerciaux, ateliers, usines,
- des mares et autres plans d'eaux pour éviter la dégradation du recouvrement et l'infiltration des eaux dans le sous-sol,
- de tous puits ou forages autres que ceux destinés à l'AEP. Cette interdiction ne doit pas concerner les ouvrages nécessaires à l'étude, la surveillance et la protection de la ressource en eau.

En outre, nous proposons que l'on surveille, le débit et la qualité des eaux du captage.

10. CONCLUSION

10.1. Disponibilité en eau

Sur le plan quantitatif, la consommation maximale est de 16 m³/j. La source fournit à l'étiage un débit de 73 m³/j et permet de subvenir à la totalité des besoins.

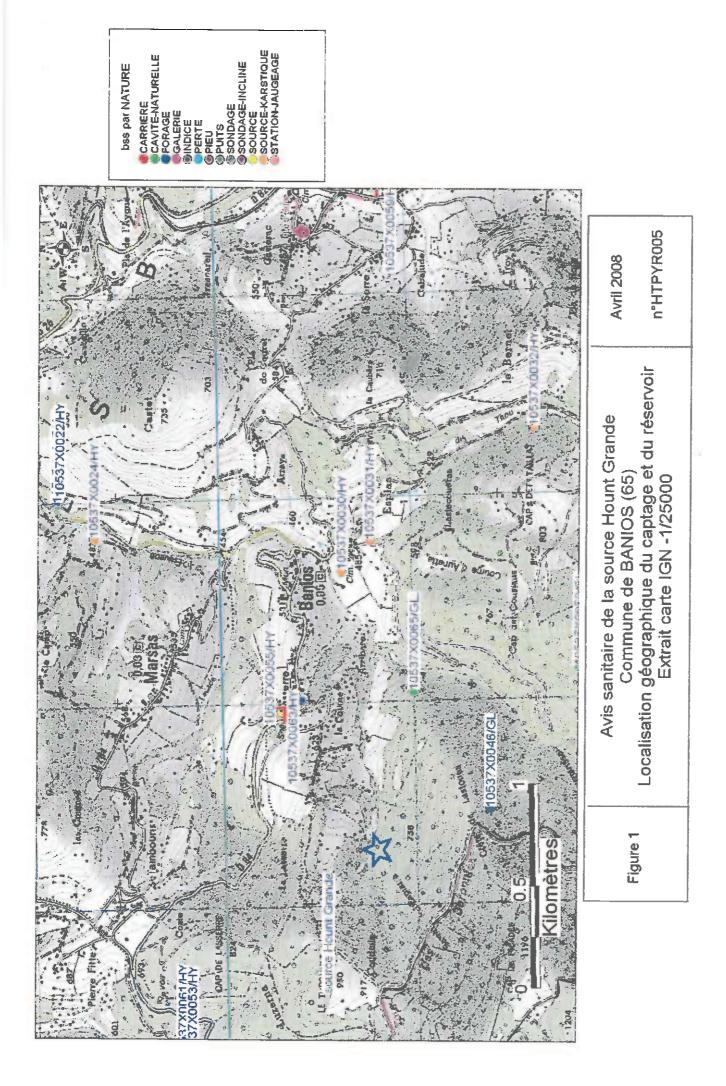
Sur le plan qualitatif, l'eau est de bonne qualité, avec cependant des analyses bactériologiques non-conformes sur la source. Compte tenu de la vulnérabilité de l'aquifère, une dégradation de la qualité des eaux est envisageable (accidentelle ou diffuse). Les mesures de protection évoquées précédemment doivent permettre de réduire le risque sans l'exclure.

Une installation de désinfection doit être prévue au niveau des réservoirs pour améliorer la qualité de l'eau distribuée.

Des contrôles réguliers de la qualité de l'eau doivent être réalisés conformément à la réglementation.

11.2. Avis sur la protection de la source Hount Grande

Le respect des prescriptions, des réglementations et recommandations détaillées précédemment permettra d'assurer au mieux la préservation de cette ressource en eau souterraine, compte tenu des contraintes de terrain et de l'état actuel des connaissances sans que l'efficacité de ces mesures ne puisse être garantie de manière absolue.


Sous réserve du suivi des propositions et prescriptions énoncées dans ce rapport, un avis sanitaire favorable peut être donné pour le captage de la source Hount Grande aux fins d'alimentation en eau potable du public au débit de 16 m³/j.

La réalisation des travaux et la mise en place des périmètres est une garantie pour maintenir une bonne qualité des eaux. Si lors du captage de la source, le débit s'avérait plus important, les limites du périmètre de protection rapprochée pourraient être révisées et augmentées.

M.TROCHU

 $n^{\circ}HTPYR0005B$

FIGURES

CARRIERE
CAVITE-NATURELLE
CAVITE-NATURELLE
GALERIE
GALERIE
OPERTE
OPERTE bss par NATURE n°HTPYR005 Avril 2008 Extrait carte géologique Bagnères de Bigorre et Campan 1/50000 Source BRGM ng-ha 14 BS Avis sanitaire de la source Hount Grande Commune de BANIOS (65) Figure 2

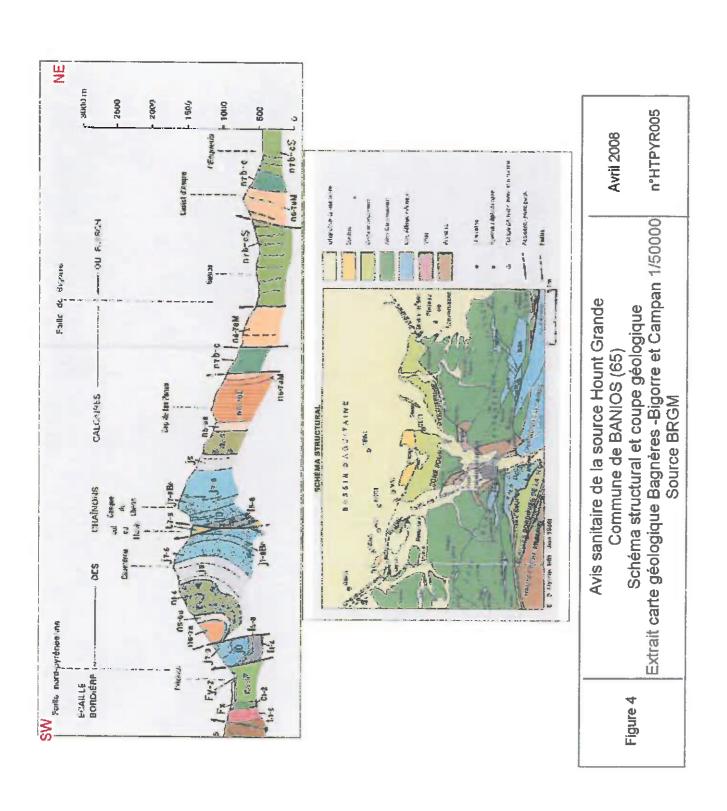


Figure 3

Avis sanitaire de la source Hount Grande Commune de BANIOS (65) Legende géologique Extrait carte géologique Campan 1/50000 Source BRGM

Avril 2008

n°HTPYR005

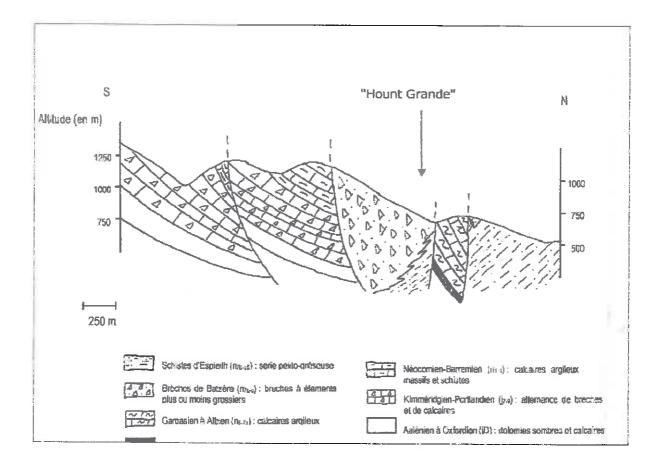


Figure 5

Avis sanitaire de la source Hount Grande Commune de BANIOS (65) coupe géologique Extrait rapport Asconit

Avril 2008

n°HTPYR004

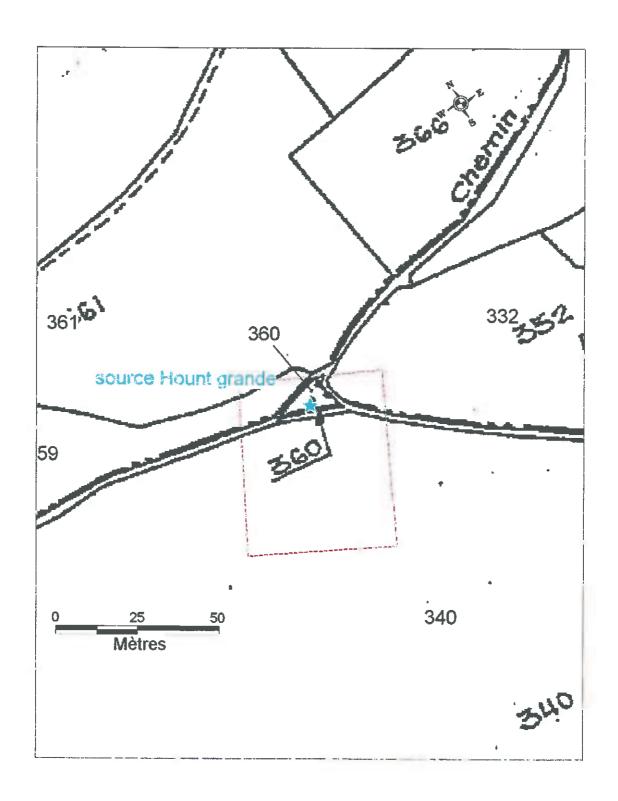
Réservoir secondaire

Réservoir principal

Ballon dans réservoir principal

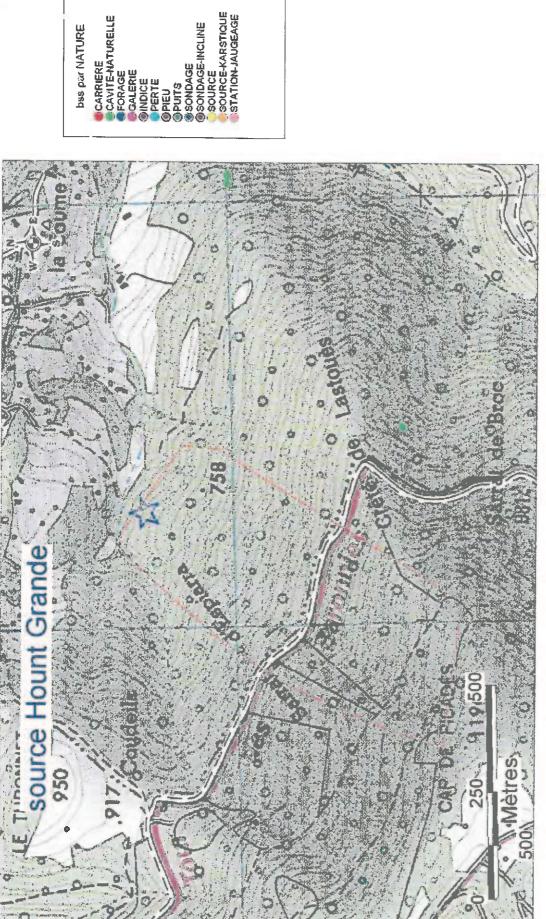
Captage actuel

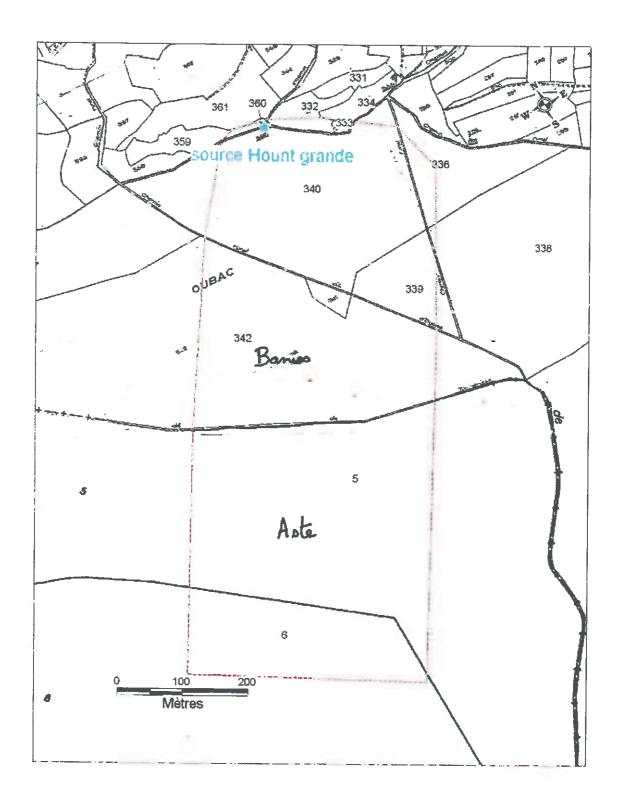
Vue bassin versant amont et sur le sommet du Cap del Coustaus

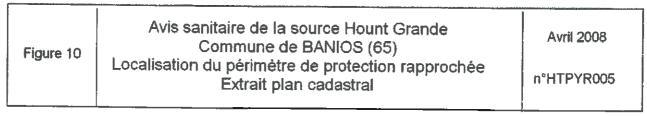

partic amont

actuel


Figure 6


HTPYR005 Avril 2008


Avis sanitaire de la source Hount Grande
Commune de BANIOS (65)
Localisation du périmètre de protection immédiate
Extrait plan cadastral


Avril 2008
n°HTPYR005

n°HTPYR005 **Avril 2008** Localisation du périmètre de protection rapprochée Extrait carte IGN 1/25000 Avis sanitaire de la source Hount Grande Commune de BANIOS (65) Figure 9

ANNEXES

ANNEXE 1

CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIENE DE LYON

Laboratoire Agréé pour les analyses d'eaux de Vinitrere de Santé

ACEMAHO, Paul CHAMBON Directeur du Laborature Tél. : (33) 94 72 73 16 16 Fax: (33) 04 13 72 35 03

Rapport d'analyse

Page 1 / 11

Edité le : 15/06/2006

Nº1-1531 PORTER COMMUNIQUEE

ASCONIT Consultant M. Damien GABION

boulevard de Finlande ZI POMPEY-Industries

Réference contrat : LSEC05-3010

54340 NANCY

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 11 pages. La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole '#".

Identification dossier:

LSE06-11610

Identification échantillon: LSE0605-4738

NATURE:

Eau de source

ORIGINE: COMMUNE:

Hount Grande

DEPARTEMENT:

BANIOS

65

PRELEVEMENT.

Prélevé le : 15/05/2006

à 14h00

Réceptionné le : 16/05/2006

Prélevé par : ASCONIT Consultants / M. GABION

· Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire.

Date de début d'analyse : 17/05/2006

Paramètres analytiques	• • • • • • • • • • • • • • • • • • •	Résultats	Unités	Méthodes	Norme	Limites de qualite	de qualite	COFRAC
Mesures sur le terrain Température de l'eau	_RP	Non mesuré	°C	Thermométrie	Méthode interne			
Analyses microbiologiques Escherichia coli Entérocoques (Streptocoques fécaux) Analyses physicochimiques	_RP _RP	1	UFC/100 ml UFC/100 ml	Filtration Filtration	NF EN ISO 9308-1 NF EN ISO 7899-2			
Analyses physicochimiques de base Turbidité pH Température de mesure du pH Conductivité électrique brute à 20°C Conductivité électrique brute à 25°C Indice permanganate Fluorures	_RP _RP _RP _RP _RP _RP _RP _RP	0.31 8.20 21.3 262 291 < 0.5 < 0.05	NFU - °C µS/cm µS/cm mg/l O2 mg/l F-	Néphélométrie Electrochimie Electrochimie Conductimétrie Conductimétrie Titrimétrie Chromatographie ionique	NF EN ISO 7027 NF 790-008 NF 790-008 NF EN 27888 NF EN 27888 ISO 8467 NF EN ISO 10304-1			#

Rapport d'analyse

Page 2 / 11

Edité le : 15/06/2006

Identification échantillon: LSE0605-4738

Destinataire: ASCONIT Consultant

Parametres analytiques		Resultats	Unités	Méthodes	Norme	Limites de qualite	Réferences de qualité
Hydrocarbures totaux	_RP	< 0.010	mg/l	Spectrométrie IR	Méthode interne		
Phosphore total	_RP	< 0.02	mg/l P	ICP/MS après décantation	Méthode interne		
Phosphore total	_RP	<0.04	mg/l P2O5	ICP/MS après décantation	Méthode interne		
Analyse des gaz							
Oxygène dissous	_RP	9.2	mg/l O2	Electrochimle	NF EN 25814		
l'empérature de mesure	_RP	22	°C	Electrochimie	NF EN 25814		
H2S	_RP	< 0.05	mg/1 H2S	Potentiométrie	Méthode interne		
Agressivité au marbre							
ΓH avant essai au marbre	_RP	14.8	°F	Potentiométrie			
TH après essai au marbre	_RP	13.4	°F	Potentiométrie			
oH avant essai au marbre	_RP	8.20	-	Electrochimie			
Température de mesure du pH	_RP	21.3	°C	Electrochimie	1		
FAC avant essai au marbre	_RP	2.81	mEq/I	Potentiométrie			- 1
ΓAC avant essai au marbre	_RP	78.68	mg/l CaO	Potentlométrie			
oH après essai au marbre	_RP	7.75	29 20	Electrochimie			
l'empérature de mesure du pH	_RP	22.1	°C	Electrochimie			
FAC après essai au marbre	_RP	2.65	mEq/l	Potentiométrie			- 1
ΓAC après essai au marbre	_RP	74.20	mg/l CaO	Potentiométrie			ĺ
Cations							
Ammonium	_RP	< 0.05	mg/l NH4+	Spectrophotométrie au bleu	NF T90-015-2		
Calcium	_RP	77	mg/l Ca++	d'indophénol Chromatographie ionique	NF EN ISO 14911		
Magnésium	_RP	26.2	mg/l Mg++	Chromatographie ionique	NF EN ISO 14911		
Sodium	_RP	7.2	mg/l Na+	Chromatographie ionique	NF EN ISO 14911		- 1
Anions							
Carbonates	_RP	0	mg/l CO3	Potentiométrie Potentiométrie	NF EN 9963-1		
Bicarbonates	_RP	171	mg/I HCO3-	Potentiométrie	NF EN 9963-1		
Chlorures	_RP	2.4	mg/l Cl-	Chromatographie ionique	NF EN ISO		- 1
Sulfates	_RP	5.3	mg/I SO4	Chromatographie ionique	10304-1 NF EN ISO		
Vitrates	_RP	2.6	mg/l NO3-	Chromatographle ionique	10304-1 NF EN ISO		- 1
	_RP			1	10304-1		- 1
Nitrites Silice ionisée (silicates)	_RP	< 0.02 6.1	mg/l NO2-	Spectrophotométrie ICP/AES après filtration	NF EN 26777 NF EN ISO 11885		
Métaux	2	0.1	mg/l SiO2	is. // indicated	NI EN ISO TRAS		
Antimoine dissous	_RP	S 0.0005	/I CI-	ICP/MS après filtration	ISO (7304 L 2		- 1
Arsenic dissous	_RP	< 0.0025 < 0.005	mg/l Sb	ICP/MS après filtration	ISO 17294-1 et 2		1
Bore dissous	_RP	< 0.05	mg/l As	ICP/MS après filtration	ISO 17294-1 et 2 ISO 17294-1 et 2		
Cadmium dissous	_RP	< 0.001	mg/l B	ICP/MS après filtration	ISO 17294-1 et 2		
Fer dissous	_RP	< 0.05	mg/l Cd mg/l Fe	ICP/MS après filtration	ISO 17294-1 et 2		
/anganèse total	_RP	< 0.03	mg/l Mn	ICP/MS après acidification et	ISO 17294-1 et 2		
970407	_ _RP		-	décantation			- 1
Vickel dissous		< 0.010	mg/l Ni	ICP/MS après filtration	ISO 17294-1 et 2		
sélénium dissous	_RP	< 0.010	mg/l Se	ICP/MS après filtration	ISO 17294-1 et 2		

Rapport d'analyse Page 3 / 11

Edité le : 15/06/2006

Identification échantillon : LSE0605-4738
Destinataire : ASCONIT Consultant

Paramètres analytiques		Résultats	Unités	Methodes	Norme	Limites de qualite	Références de qualrie
COV : composés organiques volat	ils						
Solvants organohalogénés						1 1	
Tétrachloroéthylène	_RP	< 0.5	μg/l	HS/GC/MS	NF EN ISO 10301		
Trichloroéthylène	_RP	< 0.5	μg/l	HS/GC/MS	NF EN ISO 10301		
Somme des tri et tétrachloroéthylène	_RP	< 1.0	μg/l	HS/GC/MS	NF EN ISO 10301		
Pesticides							
Pesticides azotés							
Amétryne	TLA	< 50	ng/l	GC/MS après extraction SPE	Mèthode interne		
Atrazine	TLA	< 20	ng/l	GC/MS après extraction SPE	Méthode interne		
Atrazine déisopropyl	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne		-
Atrazine déséthyl	TLA	< 40	ng/l	GC/MS après extraction SPE	Měthode interne		
Cyanazine	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Desmetryne	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Hexazinone	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode Interne	1 1	1
Metamitrone	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne		
Metribuzine	TLA	< 50	ng/l	GC/MS après extraction SPE	Mëthode interne		
Prométryne	TLA	< 25	ng/I	GC/MS après extraction SPE	Mêthode interne	1 1	1
Propazine	TLA	< 40	ng/l	GC/MS après extraction SPE	Méthode interne		
Secbumeton	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Simazine	TLA	< 40	ng/l	GC/MS après extraction SPE	Méthode interne		- 1
Terbumeton	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Terbutryne	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Terbutylazine	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode interne		
Terbutylazine déséthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Pesticides organochlorés		Ì					
2,4' DDD	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode interne		
2,4' DDE	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode interne		ĺ
2,4' DDT	TLA	< 25	ng/l	GC/MS après extraction SPE	Mithode interne		
4,4' D DD	TLA	< 25	ng/[GC/MS après extraction SPE	Méthode interne		
4,4' DDE	TLA	< 25	ng/l	GC/MS après extraction SPE	Mëthode interne		
4,4' DDT	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode Interne		
Aldrine	TLA	< 20	ng/l	GC/MS après extraction SPE	Méthode interne		
Chlordane cis (alpha)	TLA	< 50	ng/I	GC/MS après extraction SPE	Méthode interne		
Chlordane trans (béta)	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Dicofol	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Dieldrine	TLA	< 20	ng/l	GC/MS après extraction SPE	Mêthode interne		
Endosulfan alpha	TLA	< 50	ng/I	GC/MS après extraction SPE	Méthode interne	f	i i
Endosulfan béta	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		- 1
Endosulfan sulfate	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne		
Endrine	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode interne		
HCB (hexachlorobenzène)	TLA	< 15	ng/l	GC/MS après extraction SPE	Méthode interne		
HCH alpha	TLA	< 20	ng/l	GC/MS après extraction SPE	Méthode interne		
HCH béta	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		

.....

Råpport d'analyse Page 4 / 11

Edité le : 15/06/2006

Identification échantillon : LSE0605-4738 Destinataire : ASCONIT Consultant

Paramètres analytique	s	Résultats	Unités	Méthodes	Norme	Limites de qualité	Références de qualité	
HCH delta	TLA	< 50	ng/I	GC/MS après extraction SPE	Měthode interne	T		Т
Heptachlore	TLA	< 20	ng/l	GC/MS après extraction SPE	Méthode interne			1
Heptachlore époxyde endo cis	TLA	< 20	ng/l	GC/MS après extraction SPE	Méthode interne			#
Heptachlore époxyde exo trans	TLA	< 20	ng/l	GC/MS après extraction SPE	Méthode interne];
Isodrin	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			1
Lindane (HCH gamma)	TLA	< 20	ng/l	GC/MS après extraction SPE	Mëthode interne			#
Pesticides organophosphorés								
Azinphos éthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne			#
Azinphos méthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		ĺ	#
Bromophos éthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Bromophos méthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			"
Cadusafos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			["
Carbophénothion	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interno			#
Chlorfenvinphos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Chlormephos	TLA	< 50	ng/l	GC/MS après extraction SPE	Měthode interne			"
Chlorpyriphos éthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Měthode interne			1,41
Chlorpyriphos methyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Coumaphos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Demeton S methyl sulfone	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Diazinon	TLA	< 50	ng/I	GC/MS après extraction SPE	Mèthode interne			l.,
Dichlofenthion	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	1 1		#
Dichlorvos	TLA	< 50	I -	GC/MS après extraction SPE				#
Dimethoate	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne			#
Disulfoton	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne Méthode interne			#
Ethion	TLA	< 50	ng/i	GC/MS après extraction SPE		1 1		#
Ethoprophos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	1 1		#
Fenchlorphos	TLA	< 50	ng/l		Méthode interne			
Fenitrothion	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Fenthion	TLA	1	ng/l	GC/MS après extraction SPE	Mcthode interne			#
Fonofos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Formothion	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode Interna	1 1		#
Isazofos	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			
Isofenphos	TLA	< 50	ng/l	GC/MS après extraction SPE	Methode interne			
Malathion	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Methidathion		< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Mevinphos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
•	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne			#
Parathion éthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Mčthode interne	1		#
Parathion méthyl	TLA	< 50	ng/I	GC/MS après extraction SPE	Méthode interne			#
Phorate Phorate	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			, [
Phosalone	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	1 1		#
Phosphamidon	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Phoxime	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Mêthode interne			
Pirimiphos ethyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	1 1	[#
Pirimiphos methyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Profenofos	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne		- 1	

Rapport d'analyse Page 5 / 11

Edité le : 15/06/2006

Identification échantillon: LSE0605-4738 Destinataire: ASCONIT Consultant

Parametres analytiques		Résultats	Unités	Methodes	Norme	Limites de qualité	Références de qualité
Propetamphos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interna		
Pyrazophos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interns		
Quinalphos	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne		
Sulfotep	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Terbufos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Tetrachlorvinphos	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Tetradifon	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne		
Triogenhau	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne		
Triazophos Trichlorfon		< 50	ng/l	GC/MS après extraction SPE	Methode interne		
	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	1 1	
Carbamates							
Aldicarbe	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne		
Aldicarbe sulfone	TLA	< 100	ng/l	HPLC/DAD après extract. SPE	Méthode interno		
Aldicarbe sulfoxyde	TLA	< 100	ng/l	HPLC/DAD après extract.	Méthode interne		
Bendiocarb	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne	i í	
Carbaryl	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Měthode interne		
Carbendazime	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne		
Carbetamilde	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne	1 1	
Carbofuran	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne		
Carbofuran 3 hydroxy	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Mêthode interne	1 [
Chlorbutam	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Mithode interne		
Diallate	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne	1 1	H
Diethofencarb	TLA	< 50	*	SPE HPLC/DAD après extract.	Méthode interne		
EPTC	TLA		ng/l	SPE			
		< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne	1	i
Mercaptodimethur (Methiocarb)	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode intern3		
Methomyl	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne		
Oxamyl	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne	1	
Phenmedipham	TLA	< 50	ng/l	HPLC/DAD après extract.	Mithode interns		ļ
Pirimicarbe	TLA	< 50	ng/l	SPE HPLC/DAD après extract,	Méthode interne		
Propoxur	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Mé'hode interne		
Prosulfocarb	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne		
Friallate	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne		
Amides				SPE			
Acétochlore	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Alachlore	TLA	< 50	ng/I ng/I	GC/MS après extraction SPE	Méthode interne		
Benalaxyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Furala xyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		
Hexythizox	TLA	< 100	ng/l	GC/MS après extraction SPE	Měthode interne		

Rapport d'analyse Page 6 / 11

Edité le : 15/06/2006

Identification échantillon: LSE0605-4738 Destinataire: ASCONIT Consultant

Paramètres analytiqu	les	Résultats	Unités	Méthodes	Norme	Limites de qualité	Réferences de qualité	COFRAC
Isoxaben	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne	T		П
Mepronil	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			Ш
Métalaxyl	TLA	< 100	ng/l	HPLC/DAD après extract.	Měthode interne			
Métazachlor	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	l i		Πi
Métolachlor	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			Ш
Napropamide	TLA	< 50	ng/l	GC/MS après extraction SPE	Mëthode interne			
Oxadixyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Propanil	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			Ш
Propyzamide	TLA	< 50	ng/l	GC/MS après extraction SPE	Më:hode interne			#
Tebutam	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne			
Anilines								
Benfluraline	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Butraline	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Pendimethaline	TLA	< 50	ng/I	GC/MS après extraction SPE	Mëthode interne			
' Pyrimethanil	TLA	< 50	ng/l	GC/MS après extraction SPE	Měthode interne			
Trifluraline	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			Ш
Azoles								
Bitertanol	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			Ш
Cyproconazole	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode Interne	1 1		
Difenoconazole	TLA	< 200	ng/l	GC/MS après extraction SPE	Méthode interne			
Epoxyconazole	TLA	< 100	ng/l	GC/MS après extraction SPE	Mêthode interne	1 1		Ш
Fenbuconazole	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Flusilazole	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Flutriafol	TLA	< 100	ng/l	GC/MS après extraction SPE	Mëthode interne			П
Hexaconazole	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	1 1		П
Imazalil	TLA	< 150	ng/l	GC/MS après extraction SPE	Më;hode interne			#
Imazaméthabenz méthyl	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Metconazole	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Myclobutanil	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			H
Penconazole	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Prochloraze	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			
Propiconazole	TLA	< 100	ng/l	GC/MS après extraction SPE	Mêthode interne			Ш
Tebuconazole	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			
Tebufenpyrad	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Tetraconazole	TLA	< 50	ng/l	GC/MS après extraction SPE	Methode interne			
Triadimenol	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			#
Benzonitriles								
Aclonifen	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Bromoxynil	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Chloridazon	TLA	< 200	ng/l	GC/MS après extraction SPE	Méthode interne			
Dichlobenil	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		i	
Fenarimol	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Ioxynil	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne		ļ	

Rapport d'analyse Page 7 / 11

Edité le : 15/06/2006

Identification échantillon: LSE0605-4738 Destinataire: ASCONIT Consultant

Paramètres analytique	es	Résultats	Umiés	Méthodes	Norme	Liraites de qualité	Références de qualité	COFRAC
Diazines								
Bentazone	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Bromacile	TLA	< 100	ng/l	SPE GC/MS après extraction SPE	Méthode interne			
Pyridate	TLA	< 150	ng/l	GC/MS après extraction SPE	Méthode interne			
Dicarboxymides								
Captafol	TLA	< 200	ng/l	GC/MS après extraction SPE	Méthode interne			
Captane	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Dichlofluanide	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode interne			#
Folpel (Folpet)	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne	1 1		Ï
Iprodione	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne	1 1		#
Procymidone	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Vinchlozoline	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			#
Phénoxyacides			-					
2,4,5-T	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
2,4-D	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode Interne			
2,4-DB	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne			
2,4-DP (Dichlorprop)	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne			
2,4-MCPA	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Měthode interne	1 1		
2,4-MCPB	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Měthode interne		- 1	
Dicamba	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne			
Dinoseb	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Mêthode interne			
Dinoterbe	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne		ĺ	
DNOC	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne			
Fluazifop p buryl	TLA	< 50		SPE HPLC/DAD après extract.	Méthode interne			
			ng/l	SPE			-	1
Haloxyfop R	TLA	< 100	ng/l	HPLC/DAD après extract. SPE	Méthode interne			ı
MCPP (Mecoprop)	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Quizalofop	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne	ĺ		
Quizalofop éthyl	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Triclopyr	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Phénois				l si L				
Pentachlorophénol	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Pyréthrinoïdes				SPE				
Acrinathrine	TLA	c 100	n=/1	GC/MS ancès extraction SDE	Mithodo interne			
Alphaméthrine	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			
Bifenthrine	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			-
Cyfluthrine	TLA	< 25 < 200	ng/l	GC/MS après extraction SPE GC/MS après extraction SPE	Mêthode interne			
Cyperméthrine	TLA	< 100	ng/l ng/l	GC/MS après extraction SPE	Méthode interne			

Rapport d'analyse Page 8 / 11

Edité le : 15/06/2006

Identification échantillon: LSE0605-4738 Destinataire : ASCONIT Consultant

Paramétres analytiqu	es	Résultats	Unités	Methodes	Norme	Limites de qualite	Réferences de quanté	COFRAC
Deltaméthrine	TLA	< 100	ng/l	HPLC/DAD après extract.	Méthode interne			Τ
Esfenvalérate	TLA	< 100	ng/l	SPE GC/MS après extraction SPE	Mêthode interne			П
Fenpropathrine	TLA	< 50	ng/l	GC/MS après extraction SPE	Mëthode interne			
Lambda cyhalothrine	TLA	< 50	ng/l	GC/MS après extraction SPE	Mêthode interne	1 1		
Methoxychlor	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Permethrine	TLA	< 50	ng/l	GC/MS après extraction SPE	Methode interne			Н
Tau fluvalinate	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne	1 1		
Tralométhrine	TLA	< 200	ng/l	SPE HPLC/DAD après extract. SPE	Méthode interno			$\ $
Pesticides divers		İ				1 1		П
Aminotriazole	TGAA	< 100	ng/l	HPLC/ELCD	Méthode interne			
AMPA	TGAA	< 100	ng/l	HPLC/post-dérivatisation	Méthode interne			#
Anthraquinone	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			"
Bifenox	TLA	< 100	ng/l	GC/MS après extraction SPE	Mëthode interne	1 1		П
Bromadiolone	TLA	< 100	ng/l	HPLC/DAD après extract.	Měthode interne			
Bromopropylate	TLA	< 50	ng/l	SPE GC/MS après extraction SPE	Méthode interne			
Bupirimate	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Chinométhionate	TLA	< 100	ng/l	GC/MS après extraction SPE	Méthode interne			
Chlordécone	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Chloroneb	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Chlorophacinone	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Chlorothalonil	TLA	< 50	ng/l	SPE GC/MS après extraction SPE	Méthode interne			
Clomazone	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Clopyralid	TLA	< 100	ng/l	HPLC/DAD après extract.	Méthode interne			
Cymoxanil	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Měthode interne			
Cyprodinil	TLA	< 25	ng/l	SPE GC/MS après extraction SPE	Méthode interne			
Diflufenican (Diflufenicanil)	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode interne			
Dimethenamid	TLA	< 50	ng/l	GC/MS après extraction SPE	Mithode interne			
Dimethomorphe	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Ethofumesate	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Fenpropidine	TLA	< 50	ng/I	GC/MS après extraction SPE	Méthode interne			
Fenpropimorphe	TLA	< 25	ng/l	GC/MS après extraction SPE	Mëthode interne		i	Ш
Fipronil	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			
Flurochloridone	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne		- 1	
Flurtamone	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Glyphosate	TGAA	< 100	ng/l	SPE HPLC/post-dérivatisation	Mêthode interne			#
Imidaclopride	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			#
Isoxaflutol	TLA	< 50	ng/l	SPE HPLC/DAD après extract.	Méthode interne	ŀ		
Lenacile	TLA	< 50	ng/l	SPE GC/MS après extraction SPE	Méthode interne		ı	
Metosulam	TLA	< 100	ng/l	HPLC/DAD après extract.	Méthode interne			
Naptalame	TLA	< 100	ng/l	GC/MS après extraction SPE	Mêthode interne			
Norflurazor:	TLA	< 50	ng/l	GC/MS après extraction SPE	Měthode interne			
Nuarimol	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			

Rapport d'analyse Page 9 / 11

Edité le : 15/06/2006

Identification échantillon: LSE0605-4738

Destinataire: ASCONIT Consultant

Paramètres analytiques		Résultats	Unités	Méthodes	Norme	Limites de qualité	Références de qualité	(
Oryzalin	TLA	< 100	ng/l	HPLC/DAD après extract.	Méthode interne			T
Oxadiazon	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			l
Picloram (Tordon K)	TLA	< 50	ng/l	HPLC/DAD après extract,	Méthode interne			ľ
Piperonil butoxyde	TLA	< 50	ng/l	SPE GC/MS après extraction SPE	Méthode interne			ı
Propachlore	TLA	< 50	ng/l	GC/MS après extraction SPE	Mëthode interne			l
Propargite	TLA	< 50	ng/l	GC/MS après extraction SPE	Mëthode interne			l
Pyridaben	TLA	< 50	ng/l	GC/MS après extraction SPE	Měthode interne			J
Pyrifenox	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne	1		ı
Quinoxyfène	TLA	< 50	ng/I	GC/MS après extraction SPE	Méthode interne	1 1		l
Quintozène	TLA	< 50	ng/l	GC/MS après extraction SPE	Méthode interne			l
Sulcotrione	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			l
Terbacile	TLA	< 25	ng/l	GC/MS après extraction SPE	Méthode interne			
Urées substituées					:			
Amidosulfuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Mëthode interne			
Chlorotoluron (chortoluron)	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Chloroxuron	TLA	< 50	ng/l	HPLC/DAD après extract.	Měthode interne			
Chlorsulfuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Diflubenzuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Dimefuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Mèthode interne			
Diuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Mëthode interne			
Ethidimuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Fenuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Flufenoxuron	TLA	< 50	ng/I	HPLC/DAD après extract. SPE	Méthode interne			
Hexaflumuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Isoproturon	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Linuron	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Methabenzthiazuron	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interno			
Metobromuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Metoxuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Monolinuron	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			i
Monuron	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne		1	
Neburon	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			
Nicosulfuron	TLA	< 50	ng/I	HPLC/DAD après extract.	Méthode interne			
Pencycuron	TLA	< 100	ng/l	HPLC/DAD après extract.	Méthode interne		ļ	
Rimsulfuron	TLA	< 50	ng/I	HPLC/DAD après extract.	Měthode interne			
Teflubenzuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne			
Thifensulfuron méthyl	TLA	< 50	ng/l	HPLC/DAD après extract.	Méthode interne			

.....

Rapport d'analyse Page 10 / 11

Edité le : 15/06/2006

Identification échantillon : LSE0605-4738 Destinataire : ASCONIT Consultant

Paramètres analyti	ques	Résultats	Unités	Methodes	Norme	Limites de qualité	COFRAC Références de qualité
Triasulfuron	TLA	< 50	ng/l	HPLC/DAD après extract. SPE	Méthode interne		
PCB : Polychlorobiphényles	ı						
PCB indicateurs			İ				
PCB 18	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		#
PCB 28	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		#
PCB 31	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		ŀ
PCB 44	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		#
PCB 52	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EH ISO 6468		#
PCB 101	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 105	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		i II
PCB 118	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 138	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 149	TLA	< 20	ng/I	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 153	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 170	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 180	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 194	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
PCB 209	TLA	< 20	ng/l	GC/MS après extraction SPE	NF EN ISO 6468		
Radioactivité			-				
Activité alpha totale	_RP	0.04	Bq/l	Compteur à gaz proportionnel	NF M60-801		#
Activité béta totale	_RP	< 0.06	Bq/l	Compteur à gaz proportionnel	NF M60-800		#

TLA PESTICIDES LISTE COMPLETE

TGAA GLYPHOSATE, AMPA ET AMINOTRIAZOLE

_RP ANALYSE (RP SS PEST) D'UNE EAU DE RESSOURCE PROFONDE (NOUV.DECRET

Echantillon filtré par nos soins.

Directive O.M.S de 1994 Directive CEE 98/83 Arrêté du 12 mai 2004

Dose Totale Indicative (DTI) < 0,1 milli-sievert par an pour une consommation d'eau annuelle de 730 L et Activité en Tritium < 100 Bg/l.

- Si Indice d'activité alpha < 0,1 Bq/l, Indice d'activité bêta < 1 Bq/l et Activité en Tritium < 100 Bq/l.
 Le respect de ces seuils implique une DTI < 0, 1 mSv/an.
 Aucune mesure radiologique spécifique complémentaire n'est à effectuer.
- Si Indice d'activité alpha > 0,1 Bq/l, Indice d'activité bêta > 1 Bq/l ou Activité en Tritium > 100 Bq/l.
 Des mesures radiologiques spécifiques doivent être effectuées afin de calculer la DTI.

Arrêté du 17 septembre 2003: Les limites de détection pour les paramètres concernant la radioactivité sont:

- Indice d'activité alpha : 0,04 Bg/l

- Indice d'activité bêta : 0.4 Bq/l

- Tritium: 10 Bg/I

Rapport d'analyse Page 11 / 11

Edité le : 15/06/2006

Identification échantillon : LSE0605-4738
Destinataire : ASCONIT Consultant

Bruno DUMOND Responsable de Laboratoire

- June